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SUMMARY

Several computational methods to aid analysis of steady state problems in fluid dynamics are demon-
strated. These include tracking of selected flow states; computing linearized parameter sensitivities and
frequency response to forced parameter perturbations; and determining the topology of a flow by
systematically locating critical points of the velocity vector field. The primary concern addressed by these
methods is analysis of collections of steady state solutions obtained through parameter studies, rather
than analysis of an isolated solution. In this regard, these methods are intended to answer the criticism
sometimes made that solutions obtained by numerical methods do not lend insight to parameter effects
so easily as do traditional methods. Dip coating, slot coating, and a prototype of forward roll coating (a
lid-driven cavity with throughflow) are used to demonstrate application of the methods. © 1998 John
Wiley & Sons, Ltd.

1. INTRODUCTION

One trend today in fluid dynamics is towards solving ever larger problems, e.g. three-dimen-
sional flows in complex geometries. This trend naturally follows as a consequence of the
continued increase in computing power. The ongoing study of two-dimensional flows remains
of interest, however. The current capability of computers is such that it is possible to solve
many instances of 2D flows, which makes detailed parameter studies possible. Soon computing
power will reach a state where such parameter studies are possible for 3D flows as well. A need
exists, therefore, to develop methods to systematically analyze collections of steady states. By
doing so we can address in part the remark sometimes heard with regard to numerical
solutions ‘but I can’t see the parameter, the way I can see it when I do a perturbation analysis’
(or asymptotic analysis, etc.). Towards this end, this paper presents examples of the application
of several tools to facilitate parameter studies in fluid dynamics. Parameter studies can provide
insights that help develop the fundamental understanding of the behavior of flows, and allow
us to confirm hypotheses suggested by simpler models obtained using traditional methods.

Figure 1 shows the flow domains and boundary conditions of several viscous flows chosen
as examples in this paper. Figure 1(a) shows a slot coater, in which liquid is extruded at a
specified rate from the slot of the coating die onto a moving substrate, or web. Under
favorable circumstances a liquid bridge called the coating bead is established across the gap

* Correspondence to: Department of Chemical Engineering and Materials Science, University of Minnesota, Min-
neapolis, MN 55455-0132, USA.

CCC 0271–2091/98/181199–18$17.50
© 1998 John Wiley & Sons, Ltd.

Recei6ed 21 April 1997
Re6ised 13 January 1998



A. YECKEL1200

between the die and the web, and a steady flow results in which air on the web is replaced by
a thin layer of liquid that wets it. Figure 1(b) shows another coating method, commonly
referred to as dip coating. In the limit that the coating bath becomes small, the dip coater takes
on many characteristics of the slot coater [1]. We refer to this example as the slot-to-dip
transition. Figure 1(c) shows a lid-driven cavity with throughflow. Flow enters at the bottom
left and exits at the upper right. Top and bottom walls move from left to right. The structure
of this flow is in many ways similar to that of a feed-forward roll coater, in which a layer of
liquid is transferred from one moving roll to another [2].

In all our examples the flow is single-phase, two-dimensional, Newtonian, and of constant
density and viscosity (the methods described below do not require these restrictions, however).
The corresponding Navier–Stokes equations are

Figure 1. Flow domains and boundary conditions: (a) slot coater; (b) dip coater; (c) lid-driven cavity with
throughflow.
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where Ý= −pI+ [9u+ (9u)T] is the stress tensor, and I is the identity tensor. The velocity is
u, p is the pressure, and g is a unit vector in the direction of gravity.

Equation (1) is in dimensionless form. The dimensionless velocity is uu*/U, where U is a
characteristic speed (* indicates a dimensional quantity). The Cartesian co-ordinates are
xx*/L and yy*/L, where L is a characteristic length. The dimensionless pressure is given
by pp*L/mU, where m is the viscosity. Two dimensionless parameters appear: a Reynolds
number, RerUL/m, and a Stokes number, StrgL2/mU (r is the density and g the
gravitational acceleration). The web speed is used as the characteristic velocity in the slot and
dip coaters, and the speed of the bottom boundary in the lid-driven cavity. The coating gap is
used as the characteristic length in the slot and dip coaters, and the cavity height in the
lid-driven cavity.

The boundary conditions that complete the system of equations are summarized in Figure
1. Unit vectors tangent and normal to boundaries are indicated by t and n, and s is the
arc-length along boundaries. Therefore, the curvature of a boundary is equal to dt/ds.

When the accompanying air flow is neglected, as in this case, the slot coater has a
non-physical singularity at the dynamic wetting line where the upstream free surface attaches
to the moving web. To remove the singularity we use Navier’s slip condition, which relates the
slip velocity to the shear stress at the wall through a slip coefficient b, applied over a slip
length l from the dynamic wetting line. At the inflow boundary a fully developed parabolic
velocity profile is imposed. The dimensionless inlet flow rate QQ*/UL, is equal to the
dimensionless final film thickness, hh*/L. Fully developed flow is assumed at the outflow,
which implies that the normal stress and crosswise velocity are zero. Inflow and outflow
boundaries are located at a sufficient distance upstream and downstream, respectively, so that
moving either of them further does not appreciably affect the solution in the region of interest.
Surface tension s enters through the normal force balance at free boundaries. The capillary
number arises in this boundary condition: CamU/s. Additional conditions prescribed at free
boundaries are vanishing tangential stress, and impenetrability. The impenetrability condition
accounts for time-dependent motion of the boundaries, where x; is the time rate of change of
the boundary position. An apparent contact angle, uD, is specified at the dynamic contact line.
The static contact lines are taken to be pinned at the edges of the die.

The boundary conditions applied to the slot-to-dip transition flows are similar to those of
the slot coater, with a few differences. At the inlet, a value Po is specified for the normal stress,
and the crosswise velocity is set to zero. At the static contact line two conditions are
considered: either the contact line is pinned, as in the case of the slot coater, or the static
contact angle at which the free surface meets the wall is set to a value uS.

In the lid-driven cavity, no-slip and impenetrability are the conditions applied at all solid
boundaries. Fully developed flow is assumed at the outflow and plug flow is assumed at the
inflow (neither are very realistic assumptions, but are adequate for the purpose at hand). At
corners where a moving boundary intersects a stationary boundary, the non-physical singular-
ity is removed by allowing slip in the neighborhood, in this case simply by taking the velocity
to be zero at the corners, and equal to the lid speed at other nodes along the lid. The flow is
characterized by Q, the flow rate, R, the ratio of speeds of the moving lids, and the aspect ratio
(length divided by height) A.

Galerkin’s method of weighted residuals is used with finite element basis functions to
discretize Equation (1) and its boundary conditions [3,4]. Biquadratic basis functions are used
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for the velocity, and linear discontinuous functions for the pressure. Bilinear basis functions
are used to discretize the elliptic mesh generation equations described in the next two
paragraphs.

The slot and dip coaters have free boundaries, the positions of which must be obtained
as part of the solution. Elliptic mesh generation is employed in this case, in which a pair of
elliptic partial differential equations in node-spacing potentials are solved to obtain the
locations of the finite element nodes. The free surface is parameterized by the coupling of
mesh generation to the physical problem through the free surface boundary conditions. The
equations for mesh generation used here are those used by de Santos [5]: a pair of diffusion
equations with variable coefficients,

9 · Dj(j, h)9j=0, 9 · Dh(j, h)9h=0. (2)

Together with boundary conditions, Dj and Dh control the steepness of gradients in the
node-spacing potentials j and h, and thus the x- and y-spacing of nodes, which are
equi-spaced in the potentials. Thus the diffusion coefficients were employed to concentrate
nodes in regions of our choice.

A pair of boundary conditions on Equation (2) are required. One condition is obtained
by applying boundary values of Dj and Dh that correspond to the desired node-spacing.
Generally, hyperbolic functions were used to achieve a desired node-spacing potential along
boundaries. The second condition is simply that the nodes stay on the boundary. For a
fixed domain problem the boundary positions are parameterized by algebraic equations:
lines, arcs of circles, etc. For free boundary problems, the kinematic boundary condition on
the flow field (n · u=0) provides the appropriate parameterization of the boundary. It is
through this boundary condition that the mesh equations become coupled to a viscous free
surface flow [6].

The Galerkin–finite element method reduces the Navier–Stokes and elliptic mesh equa-
tions to the set of non-linear algebraic equations

R(x, x; , p)=0, (3)

where x is the solution vector, which consists of velocity and pressure unknowns, and in
the case of the slot and dip coaters, the nodal locations. The time derivative of the solution
vector is x; , and p is a vector of the m parameters on which the problem depends.

Steady states of Equation (3), which are solutions with x; =0, are computed using New-
ton’s method:

Jdx= −R, J
(R
(x

, (4)

xi+1=xi+dx. (5)

Iteration begins with an initial estimate x0 and is continued until Equation (3) is nearly
satisfied: we required that both the L2 norm of the residual vector R and the solution
update dx be less than 10−4. In the case of the slot coater, our initial estimate was a
Stokes flow solution obtained with free surfaces replaced by fixed arcs of circles on which
the gas exerts no shear stress. In the lid-driven cavity examples we began by neglecting
inertia, in which case the problem is linear and no initial estimate is required.
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2. TRACKING DESIRED FLOW STATES

Once a first solution to Equation (3) is obtained at any set of parameters, solutions at other
parameter values are readily obtained by continuation. Continuation can be as simple as using
the solution obtained at a nearby set of parameter values as the initial estimate for the new
parameter values (called zeroth-order continuation). Generally it appears to be more efficient
to use a first-order update, however (first-order continuation [7]):

J(p)xp= −Rp, Rp
(R
(p

, (6)

x0(p+dp)=x(p)+xp dp, xp
(x
(p

. (7)

If Equation (4) is factorized with a direct solver, a set of m back-substitutions with Rp can be
used to update the initial estimate, which is a minor cost compared with the initial factoriza-
tion. An advantage is gained here over iterative solvers, which require Equation (6) to be
solved ‘from scratch’ m times.

J can be singular at isolated points along the solution branch. To handle these situations it
is necessary to augment Equation (3) with additional constraints that regularize the system. In
the case of a simple turning point, arc-length continuation can be used [7]. By adding
constraints that characterize a turning point it is possible to track the location of the singular
point in one parameter as a second parameter is varied [8]. Many additional references on the
application of continuation methods to bifurcation analysis in fluid mechanics can be found in
Reference [9].

In many cases the internal structure and external characteristics of a flow are of even greater
interest than its singular states. To track such features, Equation (3) must be augmented with
constraints that describe them. The procedure for doing so is described elsewhere [10]. One
example in that paper shows how operating windows within which the upstream static contact
line remains pinned to the corner of the slot coater die (a highly desirable flow state for
processing) can be determined. Another example shows how the onset of separation at the
upstream wall of a lid-driven cavity can be predicted. Here we show a parallel example, the
calculation of conditions of flow separation within the feed channel of the slot coater.

The criterion of flow separation from a stationary wall is that the shear stress change sign
smoothly with position along the wall. Thus a separation point must be a zero of the function
ttn(s)= tn:Ý, where t and n are the unit vectors tangent and normal to the wall, and s is the
co-ordinate along it. At the onset of separation ttn must have a double root, so the pair of
constraints that characterize the onset of separation at a boundary and augment Equation (3)
is

ttn�s=s*=0,
dttn

ds
)
s=s*

=0. (8)

Computing a zero of the second criterion of Equation (8) in a finite element discretization can
be difficult. Derivatives of the velocity are discontinuous at element boundaries, which results
in discontinuous terms in the Jacobian matrix. Such discontinuities cause serious problems for
Newton’s method. It is easier to track the circumstance where separation has just occurred, in
which case two roots of ttn, a small distance d apart, are sought:

ttn�s=s*=0, ttn�s=s*+d=0. (9)
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A value of 10−2 was used for d. Were we to track the onset of separation at a free boundary
at which the stress is zero everywhere, we would substitute the constraints that the velocity u
and its derivative du/ds are both zero; the idea, however, is the same.

In the general case, when n constraint equations N are needed to define the flow feature of
interest, Equation (3) becomes

R(x, q)=0, N(x, q)=0, (10)

where q (p, s), and s is a vector of auxiliary parameters. If there are k auxiliary parameters,
then n−k parameters in p must be left unknown, or the system of Equation (10) is
overspecified. In the current example there is one auxiliary parameter, which is the location of
separation along the boundary.

The Newton step (dx, dq) is given by the solution of� J
Nx

Rq

Nq

n�dx
dq
n

= −
�R

N
n

, (11)

Nx
(N
(x

, Nq
(N
(q

, Rq
(R
(q

.

J is generally sparse and banded, but the augmented system is usually not, therefore, block
elimination is required to exploit the sparsity of the original system:

Jw= −R, JY=Rq, Y (y1, y2, . . . , yN), (12)

dx=w−Y dq, dq= − (Nq−NxY)−1(N+Nxw). (13)

After Jz= −R is solved, the LU-decomposition of J can be back-substituted n times, once
with each column vector of Rq, to get the column vectors of Y. Though the inverse of a dense
matrix appears in Equation (13), it is an n×n matrix that is generally much smaller than J,
and therefore is economical to compute. This is the procedure adopted here.

Figure 2 shows the dimensionless flow rate Q at the onset of separation in the feed channel
of the slot coater. Conditions of the base flow are given in the figure caption. The ratio of Q
to channel width is plotted versus channel width. Also shown is the location of separation,
namely the distance upstream from the channel exit at which separation first occurs. All
lengths in the figure are measured in units of the coating gap.

The ratio of Q to channel width is simply the dimensionless pressure gradient of fully
developed flow in the channel. Figure 2 shows that the dimensionless pressure gradient at
which separation occurs is nearly constant with respect to channel width, and that separation
occurs near to the channel exit at all channel widths.

Use of continuation and solution tracking methods makes the accumulation of a large
number of solutions convenient. Without further analysis, however, the mere accumulation of
solutions is of little value. Some postprocessing tools that help to analyze these solutions
systematically are presented in the next two sections.

3. PARAMETER SENSITIVITIES AND FREQUENCY RESPONSE

This section shows another use, apart from first-order continuation, of the linearized sensitivity
of a solution to parameters xp, gotten by solving Equation (6). When a direct solution method
is used to obtain the factorization of J at the current parameter value, the cost to solve
Equation (6) is much less than the cost of the factorization. The parameter sensitivities thereby
obtained at little additional effort can provide considerable insight into the problem at hand.
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Figure 2. Tracking onset of separation in feed channel of a slot coater. Critical flow rate (�) and location of onset
(�) versus channel width. Re=20, Ca=0.125, St=0.4, uD=120°, Po=36.36, b=3×10−2, l=0.25.

As an example, consider the progression from slot coating to dip coating, illustrated in
Figure 3. Sartor and Scriven [1] showed that the slot-to-dip transition is characterized by the
dependence of the coated layer thickness on the liquid pressure at the inlet. The slot coater is
called a pre-metered flow, meaning that the final coated film thickness is controlled by the rate
at which liquid is pumped through the inlet, which in turn is a function of the pressure at the
inlet and the geometry of the coating die. The dip-coater is known as a self-metering flow: the
final coated film thickness is controlled solely by the properties of the liquid and the rate at
which the substrate, or web, is drawn from the bath. The only effect of a change in the inlet
pressure is to affect the height to which the bath is filled with liquid. Sartor and Scriven
charted the dependence of the final coated film thickness on the inlet pressure as a function of
the coating gap. They found that this dependence correlates with the value of the Bond
number: Bo=rgL2/s, which is the square of the ratio of the coating gap to the capillary
length. At Bond numbers of order 10 and greater the flow is self-metering.

Figure 3. Streamlines in slot-to-dip transition: (a) narrow bath, Bo=1.33, Ca=0.01, Re=0.67; (b) wide bath,
Bo=32.7, Ca=0.015, Re=14.5.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1199–1216 (1998)
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Figure 4. Gain, defined by Equation (14), versus Bond number for the slot-to-dip transition. Ca=0.01, Re=0.0816
at lowest Bond number, Re=16.65 at highest Bond number (Re based on bath width L). Dashed lines show limiting

values of the gain predicted using Equation (15).

To further understand the slot-to-dip transition, we studied the linearized sensitivity of the
final film thickness to various parameters. Solutions were obtained over a range of coating
gaps, characterized as a range of Bond numbers (no attempt was made to vary the capillary
length, which is :0.2 cm in aqueous and organic coating liquids). Equation (6) was used to
calculate the sensitivity of the final film thickness to perturbations of seven parameters:
viscosity, density, gravity, surface tension, coating gap, web speed and inlet pressure. Two
possibilities were considered: either the free surface is pinned at the corner of the coating die,
or it is free to relocate elsewhere on the die surface but establishes a fixed contact angle
whenever it does so. The latter case seems to be common in practical dip coating, whereas both
cases seem common in slot coating (in slot coating, pinning is regarded as a desirable
condition).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1199–1216 (1998)
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The calculated sensitivities are plotted in Figure 4 in the form of gain versus Bond number,
where

gain
p
h
(h
(p

=
p

(y2−y1)
(y2,p−y1,p), (14)

in which h is the final coated film thickness and p is the parameter. The y-locations of the web
and free surface at the outflow are y1 and y2, and their parameter sensitivities are y1,p and y2,p,
which are obtained from the appropriate components of x and xp respectively. This form of
Equation (14) was chosen because if thickness varies with parameter to an exponent (power
law dependence on p), the gain is equal to the exponent. Indeed, power law dependence on all
parameters is predicted by Landau and Levich’s [11] simple yet effective theory of dip coating
at low capillary numbers and Reynolds numbers. That theory relates the final coated film
thickness to the capillary number and capillary length:

h=aCa2/3(s/rg)1/2, (15)

in which a is a constant. Kheshgi et al. [12] have shown that Equation (15) is valid whenever
Ca20.01, providing the coating gap is large enough (described as the case of an unconfined
bath). Equation (15) is independent of the coating gap, the inlet pressure, and the Reynolds
number.

Figure 4 shows the gains predicted by Landau and Levich’s approximation as dashed lines.
The gains computed from solutions to the Navier–Stokes equations are shown by symbols, in
both pinned and unpinned cases. A contact angle of 90° was used in the unpinned case. The
results indicate that the Landau and Levich approximation applies, providing the Bond
number is greater than about 10, in this case in which Ca=0.01. The transition to this
open-bath dip coating limit is quite different in the pinned and unpinned cases, however. In
particular, the thickness of the coating in the unpinned case is not a function of the inlet
pressure at any Bond number; hence, the flow is self-metering at all Bond numbers. In the
pinned case, the influence of inlet pressure is significant at Bond numbers B10, under which
condition it is possible to pre-meter the flow to a desired rate.

When the coating gap is of the order of the capillary length or less, the coating gap exerts
a strong influence on the final coated film thickness, which is the effect of bath confinement
noted by Deryagin and Levi [13]. In the unpinned case, however, the effect is stronger and
occurs up to somewhat larger Bond numbers than in the pinned case. In the pinned case there
is almost no effect at all unless the coating gap is less than the capillary length, whereas in the
unpinned case, there is a modest effect at a coating gap that is two or three times the capillary
length.

It should be noted that the effects of coating gap and inlet pressure depend strongly on the
shape of the coating die. In the unpinned case, for instance, if the downstream die lip is
inclined with respect to the web rather than parallel to it, the bath width is no longer constant.
A change in the inlet pressure will cause the meniscus to relocate to a point at which the bath
width is changed. The change in bath width corresponds to a change in the shape of the
meniscus, the effect of which is to change the final coated film thickness when the Bond
number is less than about ten. In such a case it is possible to pre-meter the flow, unlike the case
shown in Figure 4. A thorough discussion of these effects is beyond the scope of this paper,
however. The interested reader is referred to Reference [14] for more information on the effects
of die geometry in slot coating.

To gain further insight into the slot-to-dip transition, we studied the dynamic responses of
the solution to the time-periodic sinusoidal variation of parameters:

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1199–1216 (1998)
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dp(t)=e exp(ivt), (16)

where v is the frequency and e is the amplitude of the disturbance to the chosen parameter p
(only the real part of Equation (16) is of interest). To first order in dx, the response to a small
disturbance around a steady state xo is governed by the linearization of Equation (3):

J(xo, 0, po) dx+M(xo, 0, po) dx; +Rp(xo, 0, po) dp=0, M=
(R
(x; . (17)

M is the so-called mass matrix, the matrix of basis function overlaps in the sense of inner
products of the finite element basis functions (the equivalent matrix when the equations are
approximated by finite differences is the identity matrix).

Assuming that the base flow xo is stable (and thus the complementary part of the solution
to Equation (17) decays with time), the response to the disturbance asymptotically approaches
a particular solution of the form

dx=ez exp(ivt), (18)

where z is the complex amplitude of the response. Substituting the assumed forms of dp and
dx into Equation (17) gives

(J+ ivM)z= −Rp. (19)

Equation (19) is solved to obtain z, which is used to compute the time periodic response
according to

x(t)=xo(po)+R(ez exp[vt ]). (20)

The response of component j of the solution x(t) can be characterized by an amplitude �zj � and
phase shift u :

xj(t)=xj,o+e �zj � cos[(v+u)t ], (21)

where �zj �=
zj,R2+zj,I2 and u=arctan(zj,I/zj,R). Usually the quantity of interest is the
amplitude. Further details are provided by Christodoulou [9], who studied the response of
single and two-phase slide coating flows to several parameters.

Figure 5 shows the frequency response of a dip coater to forced variations in the inlet
pressure and web position normal to the web, in the form of gain versus frequency. The gain
is computed from

gain
po

ho

)dh
dp
)
=

po

(y2,o−y1,o)
�y2,p−y1,p �. (22)

The meanings of the symbols in Equation (22) are the same as in Equation (14), except that
here yj,o refers to components of the steady state solution xo, and yj,p refers to components of
the complex response z. Notice that at v=0, Equation (6) is recovered from Equation (19),
z is equivalent to xp, and Equation (14) is recovered from Equation (22). Hence the gains
plotted in Figure 4 can be called zero-frequency gains.

The free surface is unpinned in both cases shown in Figure 5. Two gap widths are
considered: a narrow bath in which Bo=1.33, i.e. gap width approximately equal to the
capillary length, and a wide bath in which Bo=32.7, i.e. gap width much larger than capillary
length. In both cases the most dangerous frequencies occur in the range of 1–10 Hz. At the
most dangerous frequencies, the influence of web vibration is quite large. In the narrow bath
the amplitude of variation in the coated film thickness is four times the amplitude of the

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1199–1216 (1998)
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variation in web position. It is no surprise that the gain is large in the narrow bath, given that
bath confinement has a significant effect at zero frequency. It is somewhat surprising, however,
that a gain of nearly two is observed at the most dangerous frequency in the wide bath, in
which there is essentially no effect of bath confinement at zero frequency. On this basis we
surmise that the primary cause of coated film thickness variation is not due to the bath
confinement effect on the shape of the free surface, but due rather to the pumping of fluid from
the bath into the film region downstream of the web.

Pressure fluctuations cause a gain of :0.3 at the most dangerous frequency in the narrow
bath, and virtually no gain at all at the most dangerous frequency in the wide bath. We suspect
that perturbations in the inlet pressure are damped before reaching the free surface, whereas
perturbations of the coating gap act directly on the bath as a whole and thus are relatively
undamped at the free surface.

Figure 5 also shows the leading eigenvalues, plotted in the form of frequencies, obtained by
solving the generalized eigenproblem associated with sudden small disturbances of the flow
(linearized stability theory), as described by Christodoulou and Scriven [15]. According to the
theory, the response of a steady state solution xo to a small disturbance dx(0) is given by

Figure 5. Frequency response of dip coater to forced variations in web vibration and inlet pressure: (a) narrow bath,
Bo=1.33, Ca=0.01, Re=0.67; (b) wide bath, Bo=32.7, Ca=0.015, Re=14.5. Vertical lines indicate frequencies of

leading eigenmodes.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1199–1216 (1998)
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dx(t)= %
N

j=1

ejzj exp(vj t), (23)

where N is the number of unknowns (and therefore the number of normal modes zj) of the
discretized problem. The normal modes and associated eigenvalues vj are obtained by solving

J(xo, 0, po)= −vjM(xo, 0, po)zj, (24)

which is simply Equation (17) with Equation (23) substituted for dx, and dp set to zero.
Arnoldi’s method is used to obtain a few eigenvalues of the largest real part, using the
techniques described in Reference [15]. As expected, these frequencies closely match the most
dangerous frequencies predicted by the frequency response analysis.

4. PROBING THE STRUCTURE OF FLOWS

Often it is the qualitative features of a flow that are of the greatest interest. In many cases, for
example, it is particularly important to know whether flow separation occurs. There are a great
many flows in which separation occurs at a boundary. Separation also occurs within the
domain in many situations, however, as demonstrated by Jeffrey and Sherwood [16]. Other
fascinating examples that exhibit internal separation are shown by Coyle and Scriven [2], in a
simulation of a roll-coater, and by Goodwin and Schowalter [17], in a simulation of a pair of
submerged, confined jets (the latter used the algorithm developed here to produce the figures).
These examples, along with the results shown below, demonstrate the importance of locating
all separation points in a flow, both internal and at the boundaries. Merely selecting a number
of equally spaced contour values, which is the customary way to plot streamlines, often fails
to reveal internal separation points, however. What is needed is a systematic way to locate all
separation points in a flow. Such a method is described here.

In steady incompressible flows in two dimensions, there are two types of stagnation points:
separation points, and vortex centers. Both can be characterized as critical points of the
streamfunction c, defined by the condition that 9c=0 (which implies u=cy i−cx j=0). The
Hessian H(c)=cxxcyy−cxy

2 discriminates the type of critical point: H(c)\0 at an extre-
mum, which is a vortex center, and H(c)B0 at a saddle, which is a separation point. Jeffrey
and Sherwood used these criteria to locate all stagnation points, from which they constructed
figures that show vortex centers and separation streamlines in various flows. Such figures,
which we call critical point plots, reveal whether separation occurs, and whether trapped
regions of fluid with infinite residence time are present in throughflows.

To understand the connection between the critical points of a flow and its topology, we
consider particle paths, which are described by a conservative autonomous planar dynamical
system [18]: dy(yo)/dt=u, where y(yo) is the locus of points along the particle path through the
point yo. The quantity that is conserved along the particle paths is the streamfunction, because
the particle paths coincide with the streamlines in a steady incompressible flow in two
dimensions. Also, critical points of the streamfunction are equilibrium points of the particle
paths. Stagnation points are either stable (vortex centers) or unstable (separation points)
equilibria. Separation streamlines are unstable manifolds that divide the flow into stable and
unstable regions of particle location. Within stable regions the fluid residence time is infinite.
According to the theory of dynamical systems, the topology of a solenoidal velocity field is
completely determined by the locations and types of its equilibria, and its unstable manifolds.
Thus, by locating all stagnation points and separation streamlines, the topology of the flow is
known.
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A change in flow topology occurs at a critical point if H(c) changes sign when some
parameter upon which the flow depends is varied. It is possible for H(c) to go through zero
without changing sign, which also marks a change in flow topology. Hence parameter values
at which H(c)=0, sometimes referred to as bifurcation points, are of special interest (here the
term bifurcation refers to a change of stability of the equations that describe the particle paths,
rather than a change in stability of the Navier–Stokes equations). Such bifurcations often
result in a change of the number and type of critical points, but bifurcations are also possible
in which only the unstable manifolds change [18].

Critical point concepts in fluid dynamics are reviewed by Perry and Chong [19]. They discuss
the classification of critical points in three-dimensional flows (where many more types occur
than in the two-dimensional case), and review previous attempts to analyze fluid flows using
these concepts. Most attempts have relied on Taylor expansions about the critical point.
However, these local analyses have been of limited use in determining the topology of flows.

Systematic attempts to analyze the topology of numerically generated flow solutions first
appeared in the late 1980’s and are briefly reviewed by Globus et al. [20]. They describe a
software tool (TOPO) developed for visualizing the topology of three-dimensional vector fields
based on critical-point analysis. They demonstrate the use of TOPO in the analysis of data sets
from fluid dynamics simulations of some three-dimensional flows. TOPO makes a significant
step towards the systematic computation of the complete topology of three-dimensional flows,
a very difficult problem, but still retains considerable limitations. Here we restrict ourselves to
the easier task of analyzing two-dimensional incompressible flows.

The first step to locating critical points is to find all stagnation points. The point at which
the velocity goes to zero at a boundary is easily found, since its value can be always be
parameterized by one co-ordinate (the arc-length along the boundary), which reduces the
problem to finding the root of a one-dimensional equation. In the Galerkin–finite element
method employed here, all that is required is to test for roots element-by-element by solving
an appropriate quadratic equation. This method fails at no-slip boundaries, however, since all
points at the boundary have zero velocity, but not all are critical points. In this case the
appropriate criterion is that the shear stress changes sign smoothly with position along the
wall. Thus, a critical point must be a zero of the function ttn(s)= tn:Ý, where t and n are the
unit vectors tangent and normal to the wall, and s is the co-ordinate along it. The task reduces
to finding the roots of a one-dimensional function.

The velocity within the domain is a function of two space co-ordinates; therefore, in order
to find the points of zero velocity, the roots of a two-dimensional system of equations are
required, a task for which no method guarantees success. Consequently, locating stagnation
points within the domain is considerably more difficult than on the boundaries. A robust
alternative to finding zeroes of the velocity components is to find points at which the speed is
a minimum. Minima at which the speed is less than a small tolerance are identified as
stagnation points. In practice we find that this tolerance can be made quite small. We find that
a tolerance 10−10 is feasible for problems in which the average velocity is O(1).

The method used here locates minima of a multidimensional system via the downhill simplex
method [21]. This method was chosen because it requires no derivative information and thus
is simpler to implement than other methods. The method is slow, however, typically requiring
as long to generate a critical point plot as it took to obtain the solution in the first place. The
cause, of course, is a linear rate of convergence. Methods that utilize derivative information
can give a higher order rate of convergence, and should be much faster, but none were tested.

Generally, methods used to locate minima of multivariable functions are iterative, and
usually are only guaranteed to find a local minimum. The method is likely to find a local
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minimum near the initial estimate of its location. To ensure that all minima are found, the
minimization is repeated with its initial guess taken as the center of each of the elements. Since
the low-order basis functions used here can resolve no more than one stagnation point in a
single element, this procedure generally is sufficient to find all critical points (except, on
occasion, corner vortices that are contained within a single element).

When all the stagnation points are found, they must be identified as vortex centers or
separation points. The Hessian of the streamfunction could be tested, but estimating second
derivatives of the streamfunction (itself a derived quantity) is not sufficiently accurate when
applied to a low-order polynomial approximation with limited differentiability (in our case,
biquadratic basis functions). In many of the cases tested, the computed Hessian misidentified
the type of critical point. An alternate, robust method to identify critical points in finite
element calculations is as follows: (i) identify which stagnation points are vortex centers by
using a minimization algorithm to locate all extremes of the streamfunction (to find maxima
we first change the sign of the streamfunction, then locate the minima); (ii) infer that the
critical points that are not extremes of the streamfunction must be separation points.

Recent papers by Shankar [22] and Hellou and Coutanceau [23] present computational
methods without which they claim it would be impossible to reliably and easily discern critical
points. Both methods are based on global basis functions that are tailored in some sense to a
particular type of flow. Thus neither method is particularly general. Our method for locating
critical points does not rely on use of global basis functions, however, and thus is applicable
regardless of the basis function choice.

The lid-driven cavity with throughflow (Figure 1c) illustrates how critical point plots can
reveal flow structure that otherwise would pass unnoticed. The lower 10% of the left boundary
is open to inflow, and the upper 10% of the right boundary is open to outflow. Figure 6 shows
streamline plots at three flow rates, with and without the critical points displayed, at a speed
ratio of one. Thirty streamlines are plotted in the conventional manner, at equal intervals
between the maximum and minimum values. Without showing critical points, virtually no
differences can be detected among the three cases. With critical points, it is clear that
significant regions of trapped fluid are present at the lowest flow rate shown, Q=0.3258. At
a slightly higher flow rate, Q=0.3335, regions of trapped fluid are present, but are so small
that the symbols marking the vortex centers and separation points (which lie almost on top of
each other) obscure them in the figure. At a slightly higher flow rate the regions of trapped
fluid disappear. Over 400 streamlines would be required (plotted at equal intervals) to reveal
the recirculations shown in the Q=0.3258 case. In the Q=0.3335 case, over 50 000 would be
required.

Presumably, the flow in the limit as the cavity grows infinitely long is strictly parallel
rectilinear flow, the superposition of plane Couette and plane Poiseuille flow that satisfies the
boundary conditions at the top and bottom walls and passes the flow rate Q. We refer to this
as the Couette–Poiseuille limit. In this type of flow, when the speed ratio equals one, flow rates
less than one-third are accompanied by backflow. The flow far from the ends of a finite length
cavity should closely resemble the Couette–Poiseuille limit. In a long cavity, therefore, the
onset of backflow at the center of the cavity should occur at a flow rate near to one-third,
which indeed is the case, as shown by Figure 6.

In the Couette–Poiseuille limit, regions of backflow are separated from forward flow by
stagnation streamlines (along which the velocity is zero). Figure 6 shows that when there is
backflow in a finite length cavity, the incoming fluid divides into three streams that take
separate paths through the cavity. There are no stagnation streamlines, but there are
stagnation points that lie very close to the locations of the stagnation streamlines predicted in
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Figure 6. Streamlines versus flow rate in lid-driven cavity with throughflow. Top and bottom walls move from left to
right. Results at each flow rate are shown both with and without critical points. Speed ratio R=1, aspect ratio A=4,

Re=0.

the Couette–Poiseuille limit. Two of these streams flow forward along the walls. The third
stream travels an S-shaped path through the cavity. It is along this path that backflow occurs.

The flow rate at which the onset of backflow occurs is a function of the speed ratio. In the
Couette–Poiseuille limit it can be shown that the critical flow rate is related to the speed ratio
by

Q
(1+R)/2

=
2
3
�

1−

R

1+R
n

. (25)

The uppermost curve in Figure 7 corresponds to Equation (25). Galerkin–finite element
solutions of Equation (1) for a cavity with an aspect ratio equal to four show that the onset
of backflow—and therefore the transition from a one-path state to a three-path state—
matches the Couette–Poiseuille prediction of the critical flow rate to within 1%.
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At a speed ratio equal to one and flow rate equal to one-ninth, another transition occurs, to
a state in which the incoming fluid passes through the cavity in a single stream and large
recirculations appear. This is the lower one-path state shown in Figure 7. All incoming fluid
travels through the cavity along the S-shaped path. The flow rate at which this transition
occurs is equal to the flow rate that circulates around each of two symmetric vortices that fill
the cavity when there is no throughflow. At a speed ratio not equal to one, the two vortices
that fill the cavity in the no-throughflow case no longer are symmetric; therefore each vortex
circulates a different flow rate. One of these critical flow rates is given by

Q
(1+R)/2

=
4+6R−4
1+3R

9(1+R)
. (26)

Figure 7. Phase diagram of flow topology of lid-driven cavity with throughflow. The upper curve is Equation (25), and
the lower curves are Equation (26) (the lower curve with negative slope is gotten from Equation (26) with 1/R
substituted for R). Symbols show transitions found from solutions of the Navier–Stokes equations. Re=0, aspect

ratio A=4.
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The other critical flow rate is given by the same expression with 1/R substituted for R. These
two expressions give the lower curves in Figure 7, which cross at R=1. Again, Galerkin–finite
element solutions of Equation (1) for a cavity with an aspect ratio equal to four match the
Couette–Poiseuille prediction of the critical flow rate to within 1%. Transitions from a three-
to a two-path state, and from a two- to a one-path state, occur at these critical flow rates, as
illustrated in Figure 7. What is remarkable about these results is that the limiting behavior,
specifically of an infinitely long cavity, accurately matches the Navier–Stokes solutions for the
two-dimensional flow in a rather short cavity.

5. CONCLUDING REMARKS

It is common to think of computational fluid dynamics as being divided into three major tasks:
constructing a discretization (e.g. generating a mesh), solving the discretized Navier–Stokes
equations, and postprocessing the solution to obtain graphical representations of the flow, such
as streamline and velocity vector plots. It is generally recognized that there is a strong coupling
between mesh generation and solving the discretized equations when the mesh is unknown a
priori (as is the case in the dip and slot coating examples). Postprocessing is usually treated as
being independent of the other tasks, however. Indeed, this is the case when line, contour, or
vector plots of pointwise measures of the flow (which can be computed explicitly from the
solution vector) are all that is needed. Such graphical representations only require information
that can be directly derived from the solution.

In contrast, the only method presented here that can be applied given only the solution
vector is computation of critical point plots. Evaluation of parameter sensitivities and
frequency response to parameter perturbations requires computation of the Jacobian matrix
(as does linearized stability analysis). Thus these methods are coupled in some sense to the
solution of the discretized equations. An even more intimate coupling is required to track
desired flow states, in that a postprocessing result is obtained as part of the solution. It has
been shown here that by expanding the notion of postprocessing, fruitful insight can be gained
that would otherwise be difficult to glean using conventional postprocessing tools.
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